

P-003-1153001

Seat No.

M. Sc. (Electronics) (Sem. III) (CBCS) Examination May / June - 2018

P9: Circuits & Networks

Faculty Code : 003 Subject Code : 1153001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

- 1 Answer any seven from the following: 14
 - (1) Find the voltage between A and B in the following circuit.

(2) Determine the value of R in the following circuit when the current is zero in the branch CD.

- (3) Briefly explain "Supermesh" and "Supernode" with examples.
- (4) For following waveform find out $V_{\rm rms}$. The waveform is a full wave rectifier sinewave with a delay angle of 60°, i.e., each pulse starts at 60° and ends at 180°.

(5) Determine the voltage across the terminals AB in the following circuit.

(6) Determine the current flowing in the following circuit.

(7) Find out the power factor, $\cos \theta$, for following circuit.

(8) For what frequency the following circuit resonates?

- (9) Explain magneto motive force and reluctance.
- (10) Explain "Natural response" and "Transient response".
- 2 Answer any two from the following:
 - (a) Derive the formula for the voltage division in series 7 circuit and current division in parallel circuit.
 - (b) Explain mesh equations by inspection method with one example.
 - (c) Explain super node with one example. Also discuss 7 source transformation technique.
- **3** Answer the following:
 - (a) Write on superposition and Thevenin's theorems7with one example for each one.
 - (b) Explain how to get a dual circuit of a given circuit 7 with one example.

3	Answer the following:		
	(a)	Explain following for sinewave.	7
		(1) Peak value	
		(2) Peak to peak value	
		(3) Average value	
		(4) RMS value	
		(5) Peak factor	
		(6) Form factor	
		(7) Phase relation	
	(b)	Draw a parallel RL circuit driven by an AC source	7
		voltage. Derive the formula for its impedance.	
		Draw and explain phase relation of $\boldsymbol{I}_{\scriptscriptstyle R}$ and $\boldsymbol{I}_{\scriptscriptstyle L}.$	
4	Answer the following:		
	(a)	Explain resonance in RLC series circuit and discuss	7
		the impedance and phase angle for the same.	
	(b)	Explain the circle diagram of series R_L and RC	7
		circuits. Derive the circle equation for $R_{_{ m L}}$ circuit	
		where reactance is fixed but resistance is varying.	
5	Ans	swer any two from the following:	
	(a)	Define coefficient of coupling. Derive its formula.	7
	(b)	Draw the diagrams of series connected coupled	7
		circuit. Derive the expression of resultant inductance.	
	(c)	Draw the circuit of a double tuned coupled circuit.	7
		Derive the expression for voltage transfer ratio and	
		current at the resonance. Also, derive the expression for maximum amplification and the current at maximum	
		amplification.	
	(d)	Draw the series RLC circuit for its DC response.	7
		Derive the equations for its total current and draw	
		the response curves for current.	